
MATHEMATICS OF COMPUTATION
Volume 69, Number 232, Pages 1699-1705
S 0025-5718(99)01119-9
Article electronically published on May 19, 1999

IMPROVING THE PARALLELIZED POLLARD LAMBDA
SEARCH ON ANOMALOUS BINARY CURVES

ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE

ABSTRACT. The best algorithm known for finding logarithms on an elliptic
curve (E) is the (parallelized) Pollard lambda collision search. We show how
to apply a Pollard lambda search on a set of equivalence classes derived from
E, which requires fewer iterations than the standard approach. In the case of
anomalous binary curves over F2m, the new approach speeds up the standard
algorithm by a factor of 2m.

1. INTRODUCTION

Let E be an elliptic curve defined over a finite field Fq. Let P E E be a point
of prime order n, and let (P) be the prime order subgroup of E generated by P.
In elliptic curve cryptography, the major security consideration is the intractability
of the elliptic logarithm problem. If Q E (P), then Q = kP for some integer
k, 0 < k < n, called the logarithm of Q to the base P, denoted logp Q. The
problem of finding k, given P, Q, and the parameters of E, is known as the discrete
logarithm problem on the elliptic curve. The best general algorithm known for
this problem is the Pollard lambda method [5] as parallelized by van Oorschot and
Wiener [4]. When M processors are used, the expected running time of this method
is (/rn/2)/M steps.

Anomalous binary curves were first suggested for use in cryptography by Koblitz
[3]; see also Solinas [6]. In this paper, we show how the parallelized Pollard lambda
method can be sped up by a factor of 2m for anomalous binary curves over
F2m. For example, this reduces the expected time to solve the Certicom ECC2K-95
challenge [1] from about 248 steps to about 244 steps, and the expected time to solve
the the Certicom ECC2K-108 challenge from about 254 steps to about 250 steps.
Indeed, the ECC2K-95 was solved in roughly 244 steps by R. Harley of INRIA and
his collaborators (including British Telecom).

2. EQUIVALENCE CLASSES AND FUNCTIONS

Let n-1 = (2a)b. Since Zn is cyclic, there is an element a E Zn* of order a. We
can define an equivalence relation on (P) (indeed, on the whole curve) by defining
S - T if S = ?ce'T for some i E {0t, 1... , a - 1}. This relation partitions (P) into
equivalence classes. The point at infinity is in a class by itself, and the other classes
contain 2a points each (provided -1 is not a power of a). We denote the set of
equivalence classes by E/-, and let [R] denote the equivalence class containing R.

Received by the editor June 9, 1998 and, in revised form, October 15, 1998.
1991 Mathematics Subject Classification. Primary 94A60, 14Q05, 14H52.

(?)2000 American Mathematical Society

1699

1700 ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE

The defining equation for an anomalous binary curve E is y2 + xy x 3 +W2X2 +
W6, where W2, w6 E F2. The Frobenius map is the endomorphism q$ E -+ E
defined by q$ (x,y) 4 (x2,y2) and 0q (9 > (9.

We are interested in the F2m -rational points of E. For such points, the Frobenius
map is a multiplication map, mapping a point R to the point AR, where A is one
of the roots of the characteristic equation of 0. As km is the identity map, we see
that Am- 1 (mod n). We assume m is odd, so that -1 is not a power of A.1

Hence, we are in the situation above with a = A and a = m. Thus 0 induces
equivalence classes on (P), one containing the point at infinity, (9, and (n - 1)/2m
classes of size 2m.

We require a (well-defined) labelling function L, from the equivalence classes in
E/- to some set of representatives R. In this paper we require L to be one-to-
one. Furthermore, we would like this function to be easily computable, given a
representative of an equivalence class.

In the case where E is an anomalous binary curve, a suitable labelling function
for our purposes is to take the lexicographically least x-coordinate of the elements of
the equivalence class-where the coordinates are written using a normal basis rep-
resentation. This function is invariant under the Frobenius map and point negation.
It is efficiently computed, since the x-coordinates of the points in the equivalence
class are cyclic rotations of the x-coordinate of a representative point. Although
this labelling function is defined on equivalence classes, it is easily computed, given
a representative.

Finally, we require a random map 0 on E/-. As usual, we settle for a map
that "appears" random in practice. Since we will usually only have a representative
of a given equivalence class, we will have to ensure that the map is well-defined.
Experiments show that the map

E: E/ E/

defined by

R R ?+ 0k(R), where 1 = hashm(L (R)),

and hashm is a conventional hash function (in the computer science sense) having
range [0, m - 1], acts like a random map on E/ r-', provided m > 3. Note the key
point that this map is defined on points of E, but is a well-defined map on E/ 1-',

as ' ([R]) = [O$(R)] for R E E. Computing an image under this map is about the
same work as a point add, since computing Xi(R) is reasonably easy. An efficient
hash function mapping L(R) to an integer in the interval [0, m - 1] can be built by
XOR-ing words to an appropriate size and taking the result modulo m. Note that
4(R) = 2R is possible, and occurs when 1 = 0.

3. THE ALGORITHM

We now wish to apply a parallelized Pollard lambda type algorithm using the
action of 4 on E/- to search for collisions. In particular, suppose we want to find
k = logp Q, for Q E (P). As usual, the idea is to iterate 4 starting at various
classes in E/-. When we detect a collision we can (usually) determine k.

The algorithm is an analogue of the Pollard lambda algorithm, as parallelized
by Wiener and van Oorschot [4]. It is best described in the setting of multiple

'If m is composite, the sets of K-rational points on E, where K is a subfield of F2m, form
subgroups of the group of points on E. Thus such curves are normally not used in cryptography.

THE PARALLELIZED POLLARD LAMBDA SEARCH 1701

processors, although it can of course be simulated on a single processor. Suppose
we have M processors. On machine i, start iterating 0 on the point Ri, where
Ri = uiP + viQ, with ui, vi chosen randomly from [0, n - 1]. One iteration of the
algorithm amounts to machine i updating tuple [Rq, rfl to tuple [R +1, r<+1], where

Rs+'- (Rs)=Rs+0'(R`) for l=hashm(LC(R`))

and

rs+1 (1 + Al)r' modn.

Machine i starts the algorithm with the tuple [R?, r?] = [Ri, 1]. Note that R' =

r,RiR=`(Ri).
As with the parallelized Pollard lambda method, each machine i occasionally

sends distinguished tuples [L(R~), r?, i] to a central processor, to be added to a
database. The tuples sent and subsequently stored in the database are distinguished
in that L(Ri) satisfies some special property. A standard method is to consider a
tuple to be distinguished if L(Ri), considered as a bit string, has t leading zeros.
Here t is chosen as a tradeoff between memory space on the central processor and
the expected number of iterations before finding such distinguished tuples.

The central processor also stores the initial values Ri, ui, vi. Note that the distin-
guished tuples stored in the database take roughly half as much space as algorithms
where complete points are stored, or roughly two-thirds of the space in algorithms
storing only the x-coordinates of points (or points in compressed form).

A collision occurs when two tuples in the database have the same first compo-
nent. As with the parallelized Pollard lambda method, it is possible for the function
induced by 0 to have a small cycle containing no distinguished points (and thus
going undetected). By judiciously choosing the distinguishing characteristic and by
restarting the algorithm with a new point (on a given machine) if no distinguished
points are found after a preset number of iterations, we can avoid machines getting
stuck in these small cycles. The more straightforward method of adapting Pollard
lambda to take advantage of Frobenius and negation mappings requires more effort
to deal with small cycles. A discussion of these techniques is delayed until that
method is introduced in ?6. For the moment, assume that a machine caught in a
small cycle will be restarted at a new initial point.

Eventually, a collision in the database will be detected by the central processor.
There are two possibilities.

The first (fruitless) possibility is that the collision resulted because L(Ri) =

L(RM) for s 7& t. In this case the induced equations give no information on the
value of k, and machine i should be restarted on a new point.

The second (fruitful, and the more likely possibility if M > 3) is that the collision
results because L(R~) = L(RM) for i 7& j, with associated tuples [C(R'),rq,i],
[L(R'),rj,j]. Given that a collision has occurred, the probability of a fruitful
collision is roughly (M - 1)/M, and a fruitless collision 1/M. Compute S = R =

r Ri and T = = rjRj. Since L(S) = L(T), we have S = ?A'T for some 1. A
short search (m applications of the FRobenius map) can be applied to determine
the value of 1 and thereafter the correct sign, and thus c such that S = cT. As
S = riuiP + riviQ and T = rgujP + rjvjQ, it follows that

rsuiP + r'viQ = c(rju3P + r'vjQ),

1702 ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE

whence

(rsui + r'vik)P = (crtuj + cr vjk)P,

and thus

(risui + r'vi k) -(crt uj + cr vj k) (mod n).

With vanishing probability r vj - crjvj modn is nonzero, so this relation can be
solved for k.

4. RUNNING TIME ESTIMATES

We briefly analyze the running time.
Note that while the algorithm consists of iterating the function +b on points of

E, +b is a well-defined function on E/ and furthermore (empirically) behaves like
a random map on it. (It is worth mentioning that some of the random behavior of
+ is probably due to L, which 0 depends on, and also upon hashm.)

Our collision detection actually detects when we have repeated an equivalence
class. Therefore, we are essentially applying the standard Pollard lambda search
on El-. As E/ - has size n/(2m), the standard analysis shows that we can expect
a collision in an expected V(7rn/2)/(2m) total iterations. Of course, the fact that
the fruitless collisions do not give us any information changes the analysis slightly,
since in this case we do not end the search. However, if M is of reasonable size (say
M > 100, as would be expected in any cryptographically significant application of
the method), then we can expect to find a fruitful collision, and hence the desired
logarithm, in time roughly

1 7r in

M 2 2m

(using M processors). This decreases the running time of the standard algorithm
by a factor of \/2m.

Of course each iteration requires slightly more work than the standard algorithm,
since we must evaluate L: at each step, which is a little more complicated than the
analogous iteration function in the standard algorithm. The computation of L: is
not unreasonable, perhaps adding only 20% to the cost of an iteration. Hence, a
significant time savings is still realized.

The multiple ri of Ri also needs to be updated at each iteration, which seems
to require a multiplication by 1 + Al modulo n. However, ri is always of the form

lm%1 (1 + Ai)ei . As iterations proceed, the exponents ei are incremented, and only
when a distinguished point is encountered will the m exponentiations be performed,
and the resulting information sent to the central processor. At this point, the
product is remembered, and the exponents ei are reset to 0. A precomputed table
of some of the powers of 1 +Ai modulo n will be convenient for the exponentiations.
The amortized cost to update the multiples ri is therefore negligible.

We mention that these ideas can be applied to any elliptic curve, but where
we use a (a generator of a subgroup of order m in Zn) to define the equivalence
class instead of A. However, an efficient labelling function L: must be found if such
a method is to improve on the standard algorithm. The determination of such
efficient functions appears difficult, especially if the order a of a is large. This is
work in progress.

THE PARALLELIZED POLLARD LAMBDA SEARCH 1703

5. ALTERNATIVES

Above, we have described a mapping that, although operating on representatives,
is well-defined on equivalence classes. An alternative, and more straightforward,
method to obtain a mapping that is well-defined on equivalence classes is to build
a mapping with domain and range restricted to canonical representatives of the
classes.

In typical applications of the Pollard lambda collision search, the "random"
function Vb maps the current point R to R plus a linear combination of P and Q
(where P is the base of logarithms and Q is the point for which a logarithm is
desired). Usually the function is piecewise defined, using an assortment of linear
combinations, one of which is selected depending upon the current point R. For
example, if we have N linear combinations to choose from, we might regard the
x-coordinate as an integer in [O ... 2m], and select the ith linear combination if this
x-coordinate satisfies (i - 1)/N < x/2m < i/N. This is suggested in [5], with
N = 3.

If R is canonical, then the point resulting from the addition of the selected linear
combination is not, of course, guaranteed to be a canonical representative of the
equivalence class. To force / to be well-defined on equivalence classes, the result of
the addition can be normalized to a canonical representative. The normalization
process might select the point in the equivalence class of the result having the
lexicographically least representation. In the case of anomalous binary curves, with
the equivalence relation given earlier, we would select from all Frobenius mappings
of both the result and its negative.

To contrast this method from the method described in ?3, we examine the form
of the iteration used in the random mappings. The method of ?3 employs an iterate
of the form Rj+i+- ,uURi]) . Ri, where p(uRi]) is an integer multiple determined by
the equivalence class of Ri. We call this the multiplicative method. The alternative
method of this section more closely resembles the iterate originally employed by
Pollard: Rj+j +- [Ri + pp(Ri) . P + /Q(Rj) . Q], where pp(Ri) determines the
multiple of P to add, and similarly /Q(Rj) the multiple of Q. We call this the
additive method. As will be seen in the next section, this straightforward adaptation
of Pollard's iteration (restricting the domain and range to canonical representatives
of the equivalence classes) can suffer from short cycles which yield no information
on the logarithm of Q, and requires correctives to avoid such cycles. We prefer the
multiplicative method of ?3, since it does not suffer from this defect.

We note that the alternative method described in this section has been indepen-
dently discovered by Wiener and Zuccherato [8].

6. DEALING WITH CYCLES

It is apparent that fruitless cycles can be produced by the additive method
described in ?5. Assume that the normalization function of ?5 finds the point in
the equivalence class with the lexicographically least (x, y)-coordinate pair. Now
suppose the current (canonical) point R, causes the multiple k,P to be added, and
that the normalization of R, + k,P is -(R, + ksP). If the iteration function for
-(Rs + ksP) adds k,P once more, the normalization of the result, -Ri, would be
the original Ri for the normalization given above (other normalizations can have
different behaviour). This small cycle has been produced by cancellation.

1704 ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE

Other small cycles can be produced. For example, the characteristic equation
A2 A A + 2 = 0 (if trace (w2) = 1) is involved in the fruitless cycle:

initial point R
add P, then normalize by -A -A(R + P) = -AR - AP
add P -AR-AP + P
add P, then normalize by A-2 A-2(-AR-AP + P + P)
(recall -AP + 2P =-A2P) = -A-1R-P
add P, then normalize by -A -A(-A-1R - P + P) R,

which can be produced by the additive algorithm.
Not having the need for normalization, the standard Pollard technique is not

likely to produce such cycles. This is because the fruitless cycles in that case occur
only if the multiples of P and Q are identical (modulo n), and this occurs only
with vanishing probability for the additive method described in ?5 if normalization
is not applied. The multiplicative method also preserves this positive feature of
the original Pollard method; that is, fruitless cycles occur with small probability,
and only when the multiple of the initial point is identical. The additive method
with normalization can be biased to avoid fruitless cycles by "widening" the itera-
tion function. To clarify, we call an iteration function having more possibilities at
each step than some other function a wider iteration function.2 A wider iteration
function will have a larger choice of update operations at each step.

Many iterations are expected to compute a cryptographically significant log-
arithm. Hence widening the iteration function will only lessen the problem of
fruitless cycles they will still occur and must be detected.

When parallelizing the additive algorithm by using distinguished points, it is
possible that a fruitful cycle will go undetected in a cycle containing no distinguished
point. For the multiplicative method, such a cycle is always fruitless, but still must
be detected and dealt with. In what follows, a label refers to a canonical point in
the case of the additive algorithm, and an equivalence class label in the case of the
multiplicative algorithm.

To detect cycles on a given machine, we propose to intermittently save labels and
detect repetitions by comparing new labels against these stored ones. To accomplish
this, let each machine maintain an interval value which is the number of iterations
a machine will perform before saving the current label (this save is local, and has
nothing to do with the label being distinguished).

Several variations of this method are possible, where different numbers of past
values are stored, and at different intervals. In practice, it will be sufficient to
detect cycles of bounded length, so the save interval can be set to a small value
(10 or 20 perhaps). Larger cycles are much less probable, and can be dealt with
by the standard method of stopping the iteration after some period of time if a
distinguished label has not been encountered.

Once these cycles have been detected, they must be dealt with. In the additive
iteration method, such cycles are much more probable. In that case they must first
be classified as fruitful or unfruitful. Thereafter the unfruitful cycles can be dealt
with in several possible ways. One possibility is to produce a modified iteration that
depends only on the labels in the cycle. For example, the cycle could be traversed,
the lexicographically least label identified, and a modified iteration taking us out
of the cycle could be applied at the point or equivalence class corresponding to this
identified label. We call this idea collapsing the cycle, since it treats the cycle like

2Wider iteration functions have been studied by Teske [7].

THE PARALLELIZED POLLARD LAMBDA SEARCH 1705

a new point in the trajectory. This method ensures that two trajectories entering
a cycle will merge. Alternatively, the machine could be restarted.

For the additive algorithm, the most likely fruitless cycle occurs by adding a
point, negating as normalization, and adding the same point, as outlined above.
We propose that special provision be made for such cycles, involving collapsing the
cycles.

In the multiplicative method, such cycles, though unlikely, are always unfruit-
ful. They might be dealt with merely by restarting the machine; this is likely the
simplest and best policy. Alternatively, the cycle can be collapsed. The method of
collapsing small cycles is much more appropriate for the additive iteration method.

7. CONCLUSION

In this paper we outlined an improvement on the standard parallelized Pollard
lambda algorithm for finding discrete logs on an anomalous binary curve. The
generalization to curves defined over subfields other than F2 is straightforward.
The result is a speedup by a factor of 2t (for t odd) for elliptic curves over F2st
that are defined over F28. The algorithm described in ?3 appears to be superior
to the alternative algorithm described in ?5, in that the need to deal with fruitless
cycles is much reduced and less storage space is required for the central database.

Elliptic curves over F2m which have a defining equation whose coefficients are
in a proper subfield of F2m thus offer slightly less security than elliptic curves over
F2m which do not have such a defining equation.

CERTICOM CORP., 200 MATHESON BLVD. W., SUITE 103, MISSISSAUGA, ONTARIO, CANADA
L5R 3L7

E-mail address: rgallantEcerticom.com

E-mail address: rlambertEcerticom.com

E-mail address: svanstonefcerticom.com

REFERENCES

[1] The Certicom ECC Challenge, available from http://www.certicom.com/chal/,1997.
[2] D. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 2nd ed.,

Addison-Wesley, 1981. MR 83i:68003
[3] N. Koblitz, "CM-curves with good cryptographic properties", Advances in Cryptology

CRYPTO '91, Lecture Notes in Computer Science, 576 (1992), Springer-Verlag, 279-287.
MR 94e:11134

[4] P. van Oorschot and M. Wiener, "Parallel collision search with cryptanalytic applications",
to appear in Journal of Cryptology.

[5] J. Pollard, "Monte Carlo methods for index computation mod p", Mathematics of Compu-
tation, 32 (1978), 918-924. MR 58:10684

[6] J. Solinas, "An improved algorithm for arithmetic on a family of elliptic curves", Advances
in Cryptology-CRYPTO '97, Lecture Notes in Computer Science, 1294 (1997), Springer-
Verlag, 357-371.

[7] E. Teske, "Speeding up Pollard's rho method for computing discrete logarithrns", preprint,
1997, available from http: //www. inf ormatik .th-darmstadt .de/TI/Veroeff entlichung/TR/.

[8] M. Wiener and R. Zuccherato, "Faster attacks on elliptic curve cryptosystems", preprint,
1998, available from http: //grouper. ieee. org/groups/1363/contributions/attackEC.ps.

	Cit r367_c377:

