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IMPROVING THE PARALLELIZED POLLARD LAMBDA 
SEARCH ON ANOMALOUS BINARY CURVES 

ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE 

ABSTRACT. The best algorithm known for finding logarithms on an elliptic 
curve (E) is the (parallelized) Pollard lambda collision search. We show how 
to apply a Pollard lambda search on a set of equivalence classes derived from 
E, which requires fewer iterations than the standard approach. In the case of 
anomalous binary curves over F2m, the new approach speeds up the standard 
algorithm by a factor of 2m. 

1. INTRODUCTION 

Let E be an elliptic curve defined over a finite field Fq. Let P E E be a point 
of prime order n, and let (P) be the prime order subgroup of E generated by P. 
In elliptic curve cryptography, the major security consideration is the intractability 
of the elliptic logarithm problem. If Q E (P), then Q = kP for some integer 
k, 0 < k < n, called the logarithm of Q to the base P, denoted logp Q. The 
problem of finding k, given P, Q, and the parameters of E, is known as the discrete 
logarithm problem on the elliptic curve. The best general algorithm known for 
this problem is the Pollard lambda method [5] as parallelized by van Oorschot and 
Wiener [4]. When M processors are used, the expected running time of this method 
is ( /rn/2)/M steps. 

Anomalous binary curves were first suggested for use in cryptography by Koblitz 
[3]; see also Solinas [6]. In this paper, we show how the parallelized Pollard lambda 
method can be sped up by a factor of 2m for anomalous binary curves over 
F2m. For example, this reduces the expected time to solve the Certicom ECC2K-95 
challenge [1] from about 248 steps to about 244 steps, and the expected time to solve 
the the Certicom ECC2K-108 challenge from about 254 steps to about 250 steps. 
Indeed, the ECC2K-95 was solved in roughly 244 steps by R. Harley of INRIA and 
his collaborators (including British Telecom). 

2. EQUIVALENCE CLASSES AND FUNCTIONS 

Let n-1 = (2a)b. Since Zn is cyclic, there is an element a E Zn* of order a. We 
can define an equivalence relation on (P) (indeed, on the whole curve) by defining 
S - T if S = ?ce'T for some i E {0t, 1... , a - 1}. This relation partitions (P) into 
equivalence classes. The point at infinity is in a class by itself, and the other classes 
contain 2a points each (provided -1 is not a power of a). We denote the set of 
equivalence classes by E/-, and let [R] denote the equivalence class containing R. 
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The defining equation for an anomalous binary curve E is y2 + xy x 3 +W2X2 + 
W6, where W2, w6 E F2. The Frobenius map is the endomorphism q$ E -+ E 
defined by q$ (x,y) 4 (x2,y2) and 0q (9 > (9. 

We are interested in the F2m -rational points of E. For such points, the Frobenius 
map is a multiplication map, mapping a point R to the point AR, where A is one 
of the roots of the characteristic equation of 0. As km is the identity map, we see 
that Am- 1 (mod n). We assume m is odd, so that -1 is not a power of A.1 

Hence, we are in the situation above with a = A and a = m. Thus 0 induces 
equivalence classes on (P), one containing the point at infinity, (9, and (n - 1)/2m 
classes of size 2m. 

We require a (well-defined) labelling function L, from the equivalence classes in 
E/- to some set of representatives R. In this paper we require L to be one-to- 
one. Furthermore, we would like this function to be easily computable, given a 
representative of an equivalence class. 

In the case where E is an anomalous binary curve, a suitable labelling function 
for our purposes is to take the lexicographically least x-coordinate of the elements of 
the equivalence class-where the coordinates are written using a normal basis rep- 
resentation. This function is invariant under the Frobenius map and point negation. 
It is efficiently computed, since the x-coordinates of the points in the equivalence 
class are cyclic rotations of the x-coordinate of a representative point. Although 
this labelling function is defined on equivalence classes, it is easily computed, given 
a representative. 

Finally, we require a random map 0 on E/-. As usual, we settle for a map 
that "appears" random in practice. Since we will usually only have a representative 
of a given equivalence class, we will have to ensure that the map is well-defined. 
Experiments show that the map 

E: E/ E/ 

defined by 

R R ?+ 0k(R), where 1 = hashm(L (R)), 

and hashm is a conventional hash function (in the computer science sense) having 
range [0, m - 1], acts like a random map on E/ r-', provided m > 3. Note the key 
point that this map is defined on points of E, but is a well-defined map on E/ 1-', 

as ' ([R]) = [O$(R)] for R E E. Computing an image under this map is about the 
same work as a point add, since computing Xi(R) is reasonably easy. An efficient 
hash function mapping L(R) to an integer in the interval [0, m - 1] can be built by 
XOR-ing words to an appropriate size and taking the result modulo m. Note that 
4(R) = 2R is possible, and occurs when 1 = 0. 

3. THE ALGORITHM 

We now wish to apply a parallelized Pollard lambda type algorithm using the 
action of 4 on E/- to search for collisions. In particular, suppose we want to find 
k = logp Q, for Q E (P). As usual, the idea is to iterate 4 starting at various 
classes in E/-. When we detect a collision we can (usually) determine k. 

The algorithm is an analogue of the Pollard lambda algorithm, as parallelized 
by Wiener and van Oorschot [4]. It is best described in the setting of multiple 

'If m is composite, the sets of K-rational points on E, where K is a subfield of F2m, form 
subgroups of the group of points on E. Thus such curves are normally not used in cryptography. 
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processors, although it can of course be simulated on a single processor. Suppose 
we have M processors. On machine i, start iterating 0 on the point Ri, where 
Ri = uiP + viQ, with ui, vi chosen randomly from [0, n - 1]. One iteration of the 
algorithm amounts to machine i updating tuple [Rq, rfl to tuple [R +1, r<+1], where 

Rs+'- (Rs)=Rs+0'(R`) for l=hashm(LC(R`)) 

and 

rs+1 (1 + Al)r' modn. 

Machine i starts the algorithm with the tuple [R?, r?] = [Ri, 1]. Note that R' = 

r,RiR=`(Ri). 
As with the parallelized Pollard lambda method, each machine i occasionally 

sends distinguished tuples [L(R~), r?, i] to a central processor, to be added to a 
database. The tuples sent and subsequently stored in the database are distinguished 
in that L(Ri) satisfies some special property. A standard method is to consider a 
tuple to be distinguished if L(Ri), considered as a bit string, has t leading zeros. 
Here t is chosen as a tradeoff between memory space on the central processor and 
the expected number of iterations before finding such distinguished tuples. 

The central processor also stores the initial values Ri, ui, vi. Note that the distin- 
guished tuples stored in the database take roughly half as much space as algorithms 
where complete points are stored, or roughly two-thirds of the space in algorithms 
storing only the x-coordinates of points (or points in compressed form). 

A collision occurs when two tuples in the database have the same first compo- 
nent. As with the parallelized Pollard lambda method, it is possible for the function 
induced by 0 to have a small cycle containing no distinguished points (and thus 
going undetected). By judiciously choosing the distinguishing characteristic and by 
restarting the algorithm with a new point (on a given machine) if no distinguished 
points are found after a preset number of iterations, we can avoid machines getting 
stuck in these small cycles. The more straightforward method of adapting Pollard 
lambda to take advantage of Frobenius and negation mappings requires more effort 
to deal with small cycles. A discussion of these techniques is delayed until that 
method is introduced in ?6. For the moment, assume that a machine caught in a 
small cycle will be restarted at a new initial point. 

Eventually, a collision in the database will be detected by the central processor. 
There are two possibilities. 

The first (fruitless) possibility is that the collision resulted because L(Ri) = 

L(RM) for s 7& t. In this case the induced equations give no information on the 
value of k, and machine i should be restarted on a new point. 

The second (fruitful, and the more likely possibility if M > 3) is that the collision 
results because L(R~) = L(RM) for i 7& j, with associated tuples [C(R'),rq,i], 
[L(R'),rj,j]. Given that a collision has occurred, the probability of a fruitful 
collision is roughly (M - 1)/M, and a fruitless collision 1/M. Compute S = R = 

r Ri and T = = rjRj. Since L(S) = L(T), we have S = ?A'T for some 1. A 
short search (m applications of the FRobenius map) can be applied to determine 
the value of 1 and thereafter the correct sign, and thus c such that S = cT. As 
S = riuiP + riviQ and T = rgujP + rjvjQ, it follows that 

rsuiP + r'viQ = c(rju3P + r'vjQ), 
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whence 

(rsui + r'vik)P = (crtuj + cr vjk)P, 

and thus 

(risui + r'vi k) -(crt uj + cr vj k) (mod n). 

With vanishing probability r vj - crjvj modn is nonzero, so this relation can be 
solved for k. 

4. RUNNING TIME ESTIMATES 

We briefly analyze the running time. 
Note that while the algorithm consists of iterating the function +b on points of 

E, +b is a well-defined function on E/ and furthermore (empirically) behaves like 
a random map on it. (It is worth mentioning that some of the random behavior of 
+ is probably due to L, which 0 depends on, and also upon hashm.) 

Our collision detection actually detects when we have repeated an equivalence 
class. Therefore, we are essentially applying the standard Pollard lambda search 
on El-. As E/ - has size n/(2m), the standard analysis shows that we can expect 
a collision in an expected V(7rn/2)/(2m) total iterations. Of course, the fact that 
the fruitless collisions do not give us any information changes the analysis slightly, 
since in this case we do not end the search. However, if M is of reasonable size (say 
M > 100, as would be expected in any cryptographically significant application of 
the method), then we can expect to find a fruitful collision, and hence the desired 
logarithm, in time roughly 

1 7r in 

M 2 2m 

(using M processors). This decreases the running time of the standard algorithm 
by a factor of \/2m. 

Of course each iteration requires slightly more work than the standard algorithm, 
since we must evaluate L: at each step, which is a little more complicated than the 
analogous iteration function in the standard algorithm. The computation of L: is 
not unreasonable, perhaps adding only 20% to the cost of an iteration. Hence, a 
significant time savings is still realized. 

The multiple ri of Ri also needs to be updated at each iteration, which seems 
to require a multiplication by 1 + Al modulo n. However, ri is always of the form 

lm%1 (1 + Ai)ei . As iterations proceed, the exponents ei are incremented, and only 
when a distinguished point is encountered will the m exponentiations be performed, 
and the resulting information sent to the central processor. At this point, the 
product is remembered, and the exponents ei are reset to 0. A precomputed table 
of some of the powers of 1 +Ai modulo n will be convenient for the exponentiations. 
The amortized cost to update the multiples ri is therefore negligible. 

We mention that these ideas can be applied to any elliptic curve, but where 
we use a (a generator of a subgroup of order m in Zn) to define the equivalence 
class instead of A. However, an efficient labelling function L: must be found if such 
a method is to improve on the standard algorithm. The determination of such 
efficient functions appears difficult, especially if the order a of a is large. This is 
work in progress. 
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5. ALTERNATIVES 

Above, we have described a mapping that, although operating on representatives, 
is well-defined on equivalence classes. An alternative, and more straightforward, 
method to obtain a mapping that is well-defined on equivalence classes is to build 
a mapping with domain and range restricted to canonical representatives of the 
classes. 

In typical applications of the Pollard lambda collision search, the "random" 
function Vb maps the current point R to R plus a linear combination of P and Q 
(where P is the base of logarithms and Q is the point for which a logarithm is 
desired). Usually the function is piecewise defined, using an assortment of linear 
combinations, one of which is selected depending upon the current point R. For 
example, if we have N linear combinations to choose from, we might regard the 
x-coordinate as an integer in [O ... 2m], and select the ith linear combination if this 
x-coordinate satisfies (i - 1)/N < x/2m < i/N. This is suggested in [5], with 
N = 3. 

If R is canonical, then the point resulting from the addition of the selected linear 
combination is not, of course, guaranteed to be a canonical representative of the 
equivalence class. To force / to be well-defined on equivalence classes, the result of 
the addition can be normalized to a canonical representative. The normalization 
process might select the point in the equivalence class of the result having the 
lexicographically least representation. In the case of anomalous binary curves, with 
the equivalence relation given earlier, we would select from all Frobenius mappings 
of both the result and its negative. 

To contrast this method from the method described in ?3, we examine the form 
of the iteration used in the random mappings. The method of ?3 employs an iterate 
of the form Rj+i+- ,uURi]) . Ri, where p(uRi]) is an integer multiple determined by 
the equivalence class of Ri. We call this the multiplicative method. The alternative 
method of this section more closely resembles the iterate originally employed by 
Pollard: Rj+j +- [Ri + pp(Ri) . P + /Q(Rj) . Q], where pp(Ri) determines the 
multiple of P to add, and similarly /Q(Rj) the multiple of Q. We call this the 
additive method. As will be seen in the next section, this straightforward adaptation 
of Pollard's iteration (restricting the domain and range to canonical representatives 
of the equivalence classes) can suffer from short cycles which yield no information 
on the logarithm of Q, and requires correctives to avoid such cycles. We prefer the 
multiplicative method of ?3, since it does not suffer from this defect. 

We note that the alternative method described in this section has been indepen- 
dently discovered by Wiener and Zuccherato [8]. 

6. DEALING WITH CYCLES 

It is apparent that fruitless cycles can be produced by the additive method 
described in ?5. Assume that the normalization function of ?5 finds the point in 
the equivalence class with the lexicographically least (x, y)-coordinate pair. Now 
suppose the current (canonical) point R, causes the multiple k,P to be added, and 
that the normalization of R, + k,P is -(R, + ksP). If the iteration function for 
-(Rs + ksP) adds k,P once more, the normalization of the result, -Ri, would be 
the original Ri for the normalization given above (other normalizations can have 
different behaviour). This small cycle has been produced by cancellation. 



1704 ROBERT GALLANT, ROBERT LAMBERT, AND SCOTT VANSTONE 

Other small cycles can be produced. For example, the characteristic equation 
A2 A A + 2 = 0 (if trace (w2) = 1) is involved in the fruitless cycle: 

initial point R 
add P, then normalize by -A -A(R + P) = -AR - AP 
add P -AR-AP + P 
add P, then normalize by A-2 A-2(-AR-AP + P + P) 
(recall -AP + 2P =-A2P) = -A-1R-P 
add P, then normalize by -A -A(-A-1R - P + P) R, 

which can be produced by the additive algorithm. 
Not having the need for normalization, the standard Pollard technique is not 

likely to produce such cycles. This is because the fruitless cycles in that case occur 
only if the multiples of P and Q are identical (modulo n), and this occurs only 
with vanishing probability for the additive method described in ?5 if normalization 
is not applied. The multiplicative method also preserves this positive feature of 
the original Pollard method; that is, fruitless cycles occur with small probability, 
and only when the multiple of the initial point is identical. The additive method 
with normalization can be biased to avoid fruitless cycles by "widening" the itera- 
tion function. To clarify, we call an iteration function having more possibilities at 
each step than some other function a wider iteration function.2 A wider iteration 
function will have a larger choice of update operations at each step. 

Many iterations are expected to compute a cryptographically significant log- 
arithm. Hence widening the iteration function will only lessen the problem of 
fruitless cycles they will still occur and must be detected. 

When parallelizing the additive algorithm by using distinguished points, it is 
possible that a fruitful cycle will go undetected in a cycle containing no distinguished 
point. For the multiplicative method, such a cycle is always fruitless, but still must 
be detected and dealt with. In what follows, a label refers to a canonical point in 
the case of the additive algorithm, and an equivalence class label in the case of the 
multiplicative algorithm. 

To detect cycles on a given machine, we propose to intermittently save labels and 
detect repetitions by comparing new labels against these stored ones. To accomplish 
this, let each machine maintain an interval value which is the number of iterations 
a machine will perform before saving the current label (this save is local, and has 
nothing to do with the label being distinguished). 

Several variations of this method are possible, where different numbers of past 
values are stored, and at different intervals. In practice, it will be sufficient to 
detect cycles of bounded length, so the save interval can be set to a small value 
(10 or 20 perhaps). Larger cycles are much less probable, and can be dealt with 
by the standard method of stopping the iteration after some period of time if a 
distinguished label has not been encountered. 

Once these cycles have been detected, they must be dealt with. In the additive 
iteration method, such cycles are much more probable. In that case they must first 
be classified as fruitful or unfruitful. Thereafter the unfruitful cycles can be dealt 
with in several possible ways. One possibility is to produce a modified iteration that 
depends only on the labels in the cycle. For example, the cycle could be traversed, 
the lexicographically least label identified, and a modified iteration taking us out 
of the cycle could be applied at the point or equivalence class corresponding to this 
identified label. We call this idea collapsing the cycle, since it treats the cycle like 

2Wider iteration functions have been studied by Teske [7]. 
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a new point in the trajectory. This method ensures that two trajectories entering 
a cycle will merge. Alternatively, the machine could be restarted. 

For the additive algorithm, the most likely fruitless cycle occurs by adding a 
point, negating as normalization, and adding the same point, as outlined above. 
We propose that special provision be made for such cycles, involving collapsing the 
cycles. 

In the multiplicative method, such cycles, though unlikely, are always unfruit- 
ful. They might be dealt with merely by restarting the machine; this is likely the 
simplest and best policy. Alternatively, the cycle can be collapsed. The method of 
collapsing small cycles is much more appropriate for the additive iteration method. 

7. CONCLUSION 

In this paper we outlined an improvement on the standard parallelized Pollard 
lambda algorithm for finding discrete logs on an anomalous binary curve. The 
generalization to curves defined over subfields other than F2 is straightforward. 
The result is a speedup by a factor of 2t (for t odd) for elliptic curves over F2st 
that are defined over F28. The algorithm described in ?3 appears to be superior 
to the alternative algorithm described in ?5, in that the need to deal with fruitless 
cycles is much reduced and less storage space is required for the central database. 

Elliptic curves over F2m which have a defining equation whose coefficients are 
in a proper subfield of F2m thus offer slightly less security than elliptic curves over 
F2m which do not have such a defining equation. 
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